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Abstract. Shape-invariant potentials in the sense of Gendenshteı̈n (1983 JETP Lett. 38 356)
which depend on more than two parameters are not know to date. Cooper et al (1987 Phys. Rev.
D 36 2458) posed the problem of finding a class of shape-invariant potentials which depend on n
parameters transformed by translation, but it was not solved. We analyse the problem using some
properties of the Riccati equation and find the general solution.

1. Introduction

There has been much interest in the search for exactly solvable problems in quantum mechanics
from the early days of the theory to date. In this respect, the factorization method introduced
by Schrödinger [16–18] and later developed by Infeld and Hull [12] has been shown to be very
efficient. Later, the introduction of supersymmetric quantum mechanics by Witten [20] and
the concept of shape invariance by Gendenshteı̈n [11] renewed, to a great extent, the interest
in the subject. For an excellent review, see [9].

In particular, shape-invariant problems have been shown to be exactly solvable, and it was
observed that a number of known exactly solvable potentials belonged to such a class. The
natural question which arose was whether all exactly solvable problems have the property of
being shape invariant in the sense of [11]. This question was treated in an interesting paper
several years ago [8]. There, the Natanzon class of potentials [15] was investigated in detail.
Following that line of reasoning, the authors gave a classification of shape-invariant potentials
whose parameters are transformed by translation. They proposed the general case which
depends on an arbitrary but finite number, n, of parameters, and established the equations to be
solved in order to find such a class. However, they asserted to have failed to find any solution
of the equations.

For several years this class of shape-invariant potentials has been considered to be a good
candidate to enlarge the class of known solutions of the shape-invariance condition, see, for
example, [1, 2]. However, the solutions are presently unknown.

As it seems to be an interesting problem we have analysed it carefully and proved that it is
possible to find the solution in an easy way. The main point behind our method is to use, in an
appropriate way, some interesting properties of a related Riccati equation. As a consequence,
the aim of this paper is to answer to the question proposed in [8].

0305-4470/00/173467+15$30.00 © 2000 IOP Publishing Ltd 3467
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The organization of the paper is as follows. After a quick description of the problem
of shape invariance in section 2, in section 3 we will develop the mathematical study of a
particularly interesting first-order ordinary differential equation system of key importance for
the problem. Then in section 4 we will proceed to study the problem of shape-invariant
potentials depending on n parameters. We will perform some Ansätze for the superpotentials
assuming translations as the transformation law for the parameters, including the one proposed
in [8] and its more immediate generalizations. The results are presented in tables 1–4.

2. Shape invariance and the factorization method

We recall some basic ideas of the theory of related operators, the concept of partner potentials
and shape invariance. Two Hamiltonians

H = − d2

dx2
+ V (x) H̃ = − d2

dx2
+ Ṽ (x) (1)

are said to be related whether there exists an operator A such that AH = H̃A, where A need
not be invertible. If we assume that

A = d

dx
+ W(x) (2)

then, the relation AH = H̃A leads to

W(V − Ṽ ) = −W ′′ − V ′ V − Ṽ = −2W ′ (3)

while the relation HA† = A†H̃ leads to

W(V − Ṽ ) = W ′′ − Ṽ ′ V − Ṽ = −2W ′. (4)

One can easily integrate both pairs of equations; we then obtain

V = W 2 −W ′ + c Ṽ = W 2 + W ′ + d

where c and d are constants. But taking into account the equation V − Ṽ = −2W ′ we have
c = d . Therefore (see, for example, [5]), two Hamiltonians H and H̃ of the form (1) can
be related by a first-order differential operator A such as (2) if and only if there exists a real
constant d such that W satisfies the pair of Riccati equations

V − d = W 2 −W ′ Ṽ − d = W 2 + W ′ (5)

and then the Hamiltonians can be factorized as

H = A†A + d H̃ = AA† + d. (6)

Using equations (5) we obtain the equivalent pair

Ṽ − d = −(V − d) + 2W 2 Ṽ = V + 2W ′. (7)

The potentials Ṽ and V are usually said to be partners.
We would like to remark that these equations have an intimate relation with what

it is currently known as Darboux transformations in the context of one-dimensional or
supersymmetric quantum mechanics. In fact, it is easy to prove that the first of equations (5)
can be transformed into a Schrödinger equation, −φ′′ + (V (x) − d)φ = 0, by means of the
change −φ′/φ = W , and by means of φ̃′/φ̃ = W the second equation of (5) transforms
into −φ̃′′ + (Ṽ (x) − d)φ̃ = 0. The relation between V and Ṽ is given by (7). Obviously,
φφ̃ = 1, up to a non-vanishing constant factor. It is also worth noting that these Schrödinger
equations express that φ and φ̃ are respective eigenfunctions of the Hamiltonians (1) for the
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eigenvalue d. These are the essential points of the mentioned Darboux transformations, as
exposed, for example, in [13, pp 7, 24].

The concept of shape invariance was introduced by Gendenshteı̈n [11]: V is assumed
to depend on a certain set of parameters, and equations (5) define V and Ṽ in terms of a
superpotential W . The condition for a partner Ṽ to be of the same form as V but for a
different choice of the values of the parameters involved in V , is called the shape-invariance
condition [11].

More explicitly, if V = V (x, a) and Ṽ = Ṽ (x, a), where a denotes a set of parameters,
Gendenshteı̈n [11] showed that if we assume the further relation between V (x, a) and Ṽ (x, a)
given by

Ṽ (x, a) = V (x, f (a)) + R(f (a)) (8)

wheref is a transformation of the set of parameters a andR(f (a)) is a remainder not depending
on x, then the complete spectra of the HamiltoniansH and H̃ can be easily found. Just writing
the a-dependence equations (5) become

V (x, a)− d = W 2 −W ′ Ṽ (x, a)− d = W 2 + W ′. (9)

Therefore, we will assume that V (x, a) and Ṽ (x, a) are obtained from a superpotential
function W(x, a) by means of

V (x, a)− d = W 2(x, a)−W ′(x, a) Ṽ (x, a)− d = W 2(x, a) + W ′(x, a). (10)

The shape-invariance property in the sense of [11] requires the further condition (8) to be
satisfied.

The relationship of a slight generalization of the factorization method developed by Infeld
and Hull [12] with shape-invariance theory has been explicitly established in [7]. There, the
following identifications between the symbols used in the factorization method and those of
shape-invariance problems were found:

Ṽ (x, a)− d = −r(x, f (a))− L(a) (11)

V (x, a)− d = −r(x, a)− L(a) (12)

W(x, a) = k(x, a) (13)

R(f (a)) = L(f (a))− L(a). (14)

3. General solution of equations y2 + y′ = a, zy + z′ = b

Next we will study the general solution of a specific first-order ordinary differential equation
system. It will play a key role in the derivation of the main subject in this paper. The system is

y2 + y ′ = a (15)

yz + z′ = b (16)

where a and b are real constants and the prime denotes the derivative with respect to
x. Equation (15) is a Riccati equation with constant coefficients, meanwhile (16) is an
inhomogeneous linear first-order differential equation for z, provided the function y is known.
The general solution of (16) is easily obtained once we know the solutions of (15), e.g. by
means of

z(x) = b
∫ x exp{∫ ξ

y(η) dη} dξ + D

exp{∫ x
y(ξ) dξ} (17)

where D is an integration constant [7].
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The general Riccati equation

dy

dx
= a2(x)y

2 + a1(x)y + a0(x) (18)

where a2(x), a1(x) and a0(x) are differentiable functions of the independent variable x, has
very interesting properties. It should be noted that in the most general case there is no way
of writing the general solution by using some quadratures, but one can integrate it completely
if one particular solution y1(x) of (18) is known. Then, the change of variable (see, for
example, [10, 14])

u = 1

y1 − y
with inverse y = y1 − 1

u
(19)

transforms (18) into the inhomogeneous first-order linear equation

du

dx
= −(2a2y1 + a1)u + a2 (20)

which can be integrated by two quadratures. An alternative change of variable was also
proposed recently [6]:

u = yy1

y1 − y
with inverse y = uy1

u + y1
. (21)

This change transforms (18) into the inhomogeneous first-order linear equation

du

dx
=

(
2a0

y1
+ a1

)
u + a0 (22)

which is also integrable by two quadratures. We also remark that the general Riccati
equation (18) admits the identically vanishing function as a solution if and only if a0(x) = 0
for all x in the domain of the solution.

However, the most important property of Riccati equation is that when three particular
solutions of (18), y1(x), y2(x), y3(x) are known, the general solution y can be automatically
written, by means of the formula

y = y2(y3 − y1)k + y1(y2 − y3)

(y3 − y1)k + y2 − y3
(23)

where k is a constant determining each solution. As an example, it is easy to check that
y|k=0 = y1, y|k=1 = y3 and that the solution y2 is obtained as the limit of k going to ∞. For
more information on geometric and group theoretic aspects of the Riccati equation see, for
example, [3, 4, 6, 19].

We are interested here in the simpler case of the Riccati equation with constant
coefficients (15). The general equation of this type is

dy

dx
= a2y

2 + a1y + a0 (24)

where a2, a1 and a0 are now real constants, a2 	= 0. This equation, unlike the general Riccati
equation (18), is always integrable by quadratures, and the form of the solutions depends
strongly on the sign of the discriminant � = a2

1 − 4a0a2. This can be seen by separating the
differential equation (24) in the form

dy

a2y2 + a1y + a0
= dy

a2((y + a1
2a2
)2 − �

4a2
2
)

= dx.

Integrating (24) in this way we obtain non-constant solutions.
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Looking for constant solutions of (24) amounts to solving an algebraic second-degree
equation. So, if � > 0 there will be two different real constant solutions, when � = 0 there
is only one constant real solution, and if � < 0 we have no constant real solutions at all.

These properties may be used for finding the general solution of (15). For this equation
the discriminant � is just 4a. Then, if a > 0 we can write a = c2, where c > 0 is a real
number. The non-constant particular solution

y1(x) = c tanh(c(x − A)) (25)

whereA is an arbitrary integration constant, is readily found by direct integration. In addition,
there exist two different constant real solutions,

y2(x) = c y3(x) = −c. (26)

The general solution obtained using formula (23), is

y(x) = c
B sinh(c(x − A))− cosh(c(x − A))

B cosh(c(x − A))− sinh(c(x − A))
(27)

where B = (2 − k)/k, k being the arbitrary constant in (23). Substituting in (17) we obtain
the general solution for z(x),

z(x) =
b
c
{B sinh(c(x − A))− cosh(c(x − A))} + D

B cosh(c(x − A))− sinh(c(x − A))
(28)

where D is a new integration constant.
For the case a = 0, a particular solution is

y1(x) = 1

x − A
(29)

where A is an integration constant. If we apply the change of variable (21) with y1 given
by (29), then (15) with a = 0 transforms into du/dx = 0. Then, the general solution for (15)
with a = 0 is

y(x) = B

1 + B(x − A)
(30)

with A and B being arbitrary integration constants. Substituting in (17) we obtain the general
solution for z(x) in this case,

z(x) = b(B2 (x − A)2 + x − A) + D

1 + B(x − A)
(31)

where D is a new integration constant.
If now a = −c2 < 0, where c > 0 is a real number, by direct integration we find the

particular solution

y1(x) = −c tan(c(x − A)) (32)

where A is an arbitrary integration constant. With either the change of variable (19) or
alternatively (21), with y1(x) given by (32), we get the general solution of (15) for a > 0:

y(x) = −c B sin(c(x − A)) + cos(c(x − A))

B cos(c(x − A))− sin(c(x − A))
(33)

where B = cF , and F is an arbitrary constant. Substituting in (17) we obtain the general
solution for z(x) in this case,

z(x) =
b
c
{B sin(c(x − A)) + cos(c(x − A))} + D

B cos(c(x − A))− sin(c(x − A))
(34)
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Table 1. General solutions of the equations (15) and (16). A, B and D are integration constants.
The constant B selects the particular solution of (15) in each case.

Sign of a y(x) z(x)

a = c2 > 0 c
B sinh(c(x − A))− cosh(c(x − A))

B cosh(c(x − A))− sinh(c(x − A))

b
c
{B sinh(c(x − A))− cosh(c(x − A))} + D

B cosh(c(x − A))− sinh(c(x − A))

a = 0
B

1 + B(x − A)

b( B2 (x − A)2 + x − A) + D

1 + B(x − A)

a = −c2 < 0 −c B sin(c(x − A)) + cos(c(x − A))

B cos(c(x − A))− sin(c(x − A))

b
c
{B sin(c(x − A)) + cos(c(x − A))} + D

B cos(c(x − A))− sin(c(x − A))

where D is a new integration constant.
These solutions can be written in many mathematically equivalent ways. We have tried

to give their simplest form and in such a way that the symmetry between the solutions for
the cases a > 0 and a < 0 were clearly recognized. Indeed, the general solution of (15)
for a > 0 can be transformed into that of the case a < 0 by means of the formal changes
c → ic, B → iB and the identities sinh(ix) = i sin(x), cosh(ix) = cos(x). The results are
summarized in table 1.

Looking at the general solution of (15) for a > 0, i.e. equation (27), one could be tempted
to write it in the form of a logarithmic derivative,

y(x) = d

dx
log |B cosh(c(x − A))− sinh(c(x − A))|.

This is equivalent except for B → ∞. In fact, if we want to calculate

lim
B→∞

d

dx
log |B cosh(c(x − A))− sinh(c(x − A))|

we cannot interchange the limit with the derivative, otherwise we would get an incorrect
result. But this limit for B is particularly important since when taking it in (27), we recover
the particular solution (25). A similar thing occurs in the general solutions (30) and (33).
When taking the limit B → ∞ we recover, respectively, the particular solutions (29) and (32),
from which we have started. Both (30) and (33) can be written in the form of a logarithmic
derivative, but then the limit B → ∞ could not be calculated properly.

4. Shape-invariant potentials depending on an arbitrary number of parameters
transformed by translation

We will try now to generalize the class of possible factorizations considered in [7, 12]. We
analyse the possibility of introducing superpotentials depending on an arbitrary but finite
number of parameters n which transforms by translation. In turn, this will give the still-
unsolved problem proposed in [8].

More explicitly, suppose that within the parameter space some of them transform according
to

f (ai) = ai − εi ∀i ∈ # (35)

and the remainder according to

f (aj ) = aj + εj ∀j ∈ #′ (36)

where #∪#′ = {1, . . . , n}, and εi 	= 0 for all i. Using a reparametrization, one can normalize
each parameter in units of εi , that is, we can introduce the new parameters

mi = ai

εi
∀i ∈ # and mj = −aj

εj
∀j ∈ #′ (37)
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for which the transformation law reads, with a slight abuse of the notation f ,

f (mi) = mi − 1 ∀i = 1, . . . , n. (38)

Note that with these normalizations, the initial values of each mi are defined by some value in
the interval (0, 1] (mod Z).

We will use the notation m− 1 for the n-tuple m− 1 = (m1 − 1,m2 − 1, . . . , mn − 1).
The transformation law for the parameters (38) is just a particular case of a more general
transformation considered in [7]. As a corollary of a result proved there we have the following
one. The problem of finding the square integrable solutions of the equation

d2y

dx2
+ r(x,m)y + λy = 0 (39)

according to the generalization of the Infeld and Hull factorization method treated in [7,
section 3], is equivalent to that of solving the discrete eigenvalue problem of shape-
invariant potentials in the sense of [11] depending on the same n-tuple of parameters
m ≡ (m1,m2, . . . , mn) which transform according to (38).

In order to find solutions for these problems, we should find solutions of the difference-
differential equation

k2(x,m + 1)− k2(x,m) +
dk(x,m + 1)

dx
+

dk(x,m)

dx
= L(m)− L(m + 1) (40)

where now m = (m1,m2, . . . , mn) denotes the set of parameters and m + 1 means m + 1 =
(m1 + 1,m2 + 1, . . . , mn + 1), and L(m) is some function to be determined, related to R(m)
by R(m) = L(m)−L(m + 1). Equation (40) is essentially equivalent to the shape-invariance
condition Ṽ (x,m) = V (x,m − 1) + R(m − 1) for problems defined by (38) [7]. We would
like to remark that (40) always has the trivial solution k(x,m) = h(m), for every arbitrary
function h(m) of the parameters only.

Our first assumption for the dependence of k(x,m) on x and m will be a generalization
of the one used for the case of one parameter introduced in [12]:

k(x,m) = k0(x) + mk1(x) (41)

where k0 and k1 are functions of x only. The generalization to n parameters is

k(x,m) = g0(x) +
n∑
i=1

migi(x). (42)

This form for k(x,m) is exactly the same as the one proposed in [8, equations (6.24)] taking
into account (37) and (38), up to a slightly different notation. Substituting into (40) we obtain

L(m)− L(m + 1) = 2
n∑

j=1

mj

(
g′
j + gj

n∑
i=1

gi

)

+
n∑

j=1

(
g′
j + gj

n∑
i=1

gi

)
+ 2

(
g′

0 + g0

n∑
i=1

gi

)
. (43)

Since the coefficients of the powers of each mi have to be constant, we obtain the following
first-order differential equation system to be satisfied:

g′
j + gj

n∑
i=1

gi = cj ∀j ∈ {1, . . . , n} (44)

g′
0 + g0

n∑
i=1

gi = c0 (45)
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where ci , i ∈ {0, 1, . . . , n} are real constants.
The solution of the system can be found by using barycentric coordinates for the gi , that

is, the functions which separate the unknowns gi in their mass-centre coordinates and relative
ones. Hence, we will make the following change of variables and use the notations

gcm(x) = 1

n

n∑
i=1

gi(x) (46)

vj (x) = gj (x)− gcm(x) = 1

n

(
ngj (x)−

n∑
i=1

gi(x)

)
(47)

ccm = 1

n

n∑
i=1

ci (48)

where j ∈ {1, . . . , n}. Note that not all of the functions vj are now linearly independent, but
only n− 1 since

∑n
j=1 vj = 0.

Taking the sum of equations (44) we obtain that ngcm satisfies the Riccati equation with
constant coefficients

ng′
cm + (ngcm)

2 = nccm.

On the other hand, we will consider the independent functions vj (x), j ∈ {2, . . . , n} to
complete the system. Using equations (47) and (44) we find

v′
j = 1

n

(
ng′

j −
n∑
i=1

g′
i

)

= 1

n
(g′

j − g′
1 + g′

j − g′
2 + · · · + g′

j − g′
j + · · · + g′

j − g′
n)

= −vjngcm + cj − ccm

and we will take the corresponding equations from 2 to n. The system of equations (44)
and (45) is written in the new coordinates as

ng′
cm + (ngcm)

2 = nccm (49)

v′
j + vjngcm = cj − ccm ∀j ∈ {2, . . . , n} (50)

g′
0 + g0ngcm = c0 (51)

and therefore the motion of the centre of mass is decoupled from the other coordinates. But we
already know the general solution of equation (49), which is nothing but equation (15) studied
in the preceding section with the identification of y and a with ngcm and nccm, respectively.
Therefore, the possible solutions depend on the sign of nccm, that is, on the sign of the
sum

∑n
i=1 ci of all the constants appearing in equations (44). Moreover, all the remaining

equations (50) and (51) are linear differential equations of the form (16), identifying z as vj or
g0, and the constant b as cj −ccm or c0, respectively. The general solution of these equations is
readily found once ngcm is known, by means of formula (17) adapted to each case. As a result
the general solutions for the variables ngcm, vj and g0 are found directly by merely consulting
with table 1 and making the proper substitutions. The results are shown in table 2.

Once the solutions of equations (49)–(51) are known it is easy to find the expressions for
gi(x) and g0(x) by reversing the change defined by (46) and (47). It is easy to prove that it is
indeed invertible with inverse change given by

g1(x) = gcm(x)−
n∑
i=2

vi(x) (52)

gj (x) = gcm(x) + vj (x) ∀j ∈ {2, . . . , n}. (53)
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Table 2. General solutions for the differential equation system (49)–(51). A, B, D0 and Dj are
arbitrary constants. The constant B selects the particular solution of (49) for each sign of nccm.

Sign of nccm ngcm(x) vj (x) for j ∈ {2, . . . , n} and g0(x)

nccm = C2 > 0 Cf+(x,A,B,C)
cj − ccm

C
f+(x,A,B,C) + Djh+(x,A,B,C)

c0

C
f+(x,A,B,C) + D0h+(x,A,B,C)

nccm = 0 Bf0(x,A,B) (cj − ccm)h0(x,A,B) + Djf0(x,A,B)

c0h0(x,A,B) + D0f0(x,A,B)

nccm = −C2 < 0 −Cf−(x,A,B,C)
cj − ccm

C
f−(x,A,B,C) + Djh−(x,A,B,C)

c0

C
f−(x,A,B,C) + D0h−(x,A,B,C)

where

f+(x,A,B,C) = B sinh(C(x − A))− cosh(C(x − A))

B cosh(C(x − A))− sinh(C(x − A))
h+(x,A,B,C) = 1

B cosh(C(x − A))− sinh(C(x − A))

f0(x,A,B) = 1

1 + B(x − A)
h0(x,A,B) =

B
2 (x − A)2 + x − A

1 + B(x − A)

f−(x,A,B,C) = B sin(C(x − A)) + cos(C(x − A))

B cos(C(x − A))− sin(C(x − A))
h−(x,A,B,C) = 1

B cos(C(x − A))− sin(C(x − A))

Table 3. General solutions for k(x,m) of the form (42). A, B are arbitrary constants. D̃ denotes
the combination D0 +

∑n
i=2 Di(mi −m1), where D0, Di are the same as in table 2. The constant

B selects the particular solution of (49) for each sign of nccm.

Sign of nccm k(x,m) = g0(x) +
∑n

i=1 migi(x)

nccm = C2 > 0
1

C
(c0 +

∑n
i=1 mici)f+(x,A,B,C) + D̃h+(x,A,B,C)

nccm = 0 (c0 +
∑n

i=1 mici)h0(x,A,B) + (D̃ + B
∑n
i=1 mi
n

)f0(x,A,B)

nccm = −C2 < 0
1

C
(c0 +

∑n
i=1 mici)f−(x,A,B,C) + D̃h−(x,A,B,C)

where f+ = f+(x,A,B,C), f0 = f0(x,A,B), f− = f−(x,A,B,C)
h+ = h+(x,A,B,C), h0 = h0(x,A,B), h− = h−(x,A,B,C) are defined as in table 2

For each of the three families of solutions shown in table 2, one can quickly find the
corresponding functions gi(x), g0(x), and hence the function k(x,m) according to (42). The
results are shown in table 3.

We can now calculate the corresponding shape-invariant partner potentials by means of
the formulae (10), (13) and (14) adapted to this case. The results are shown in table 4.

Let us comment on the solutions for the function k(x,m) in table 3 and for the shape-
invariant potentials in table 4 we have just found. It is remarkable that the constants ci ,
c0, of equations (44), (45) always appear in the solutions by means of the combination
c0 +

∑n
i=1 mici . On the other hand, D̃ does not change under the transformationmi → mi − 1

since it depends only on differences of the mi . As D0,D2, . . . , Dn are arbitrary constants,
D̃ = D0 +

∑n
i=2 Di(mi − m1) can also be regarded as an arbitrary constant. It is very

easy to check that the functions k(x,m) indeed satisfy (40), just taking into account that
nccm = ∑n

i=1 ci and that when nccm = C2,
∑n

i=1 ci/C = C, meanwhile
∑n

i=1 ci/C = −C
when nccm = −C2. Obviously, for the case nccm = 0 we have

∑n
i=1 ci = 0. As

we have mentioned already, (40) is essentially equivalent to the shape-invariance condition
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Table 4. Shape-invariant partner potentials which depend on n parameters transformed by
traslation, when k(x,m) is of the form (42) andm = (m1, . . . , mn). The shape-invariance condition
Ṽ (x,m) = V (x,m− 1) + R(m− 1) is satisfied in each case. A, B and D̃ are arbitrary constants.

Sign of nccm V (x,m)− d, Ṽ (x,m)− d and R(m) when k(x,m) = g0(x) +
∑n

i=1 migi(x)

nccm = C2 > 0
(c0 +

∑n
i=1 mici)

2∑n
i=1 ci

f 2
+ +

D̃

C
(2(c0 +

∑n
i=1 mici) +

∑n
i=1 ci )f+h+

+(D̃2 − (B2 − 1)(c0 +
∑n

i=1 mici))h
2
+

(c0 +
∑n

i=1 mici)
2∑n

i=1 ci
f 2

+ +
D̃

C
(2(c0 +

∑n
i=1 mici)− ∑n

i=1 ci )f+h+

+(D̃2 + (B2 − 1)(c0 +
∑n

i=1 mici))h
2
+

R(m) = L(m)− L(m + 1) = 2(c0 +
∑n

i=1 mici) +
∑n

i=1 ci

nccm = 0 (c0 +
∑n

i=1 mici)
2h2

0 +
(
D̃ + B

∑n
i=1 mi
n

) (
D̃ + B

( ∑n
i=1 mi
n

+ 1
))
f 2

0

+2(c0 +
∑n

i=1 mici)

(
D̃ + B

( ∑n
i=1 mi
n

+
1

2

))
f0h0 − (c0 +

∑n
i=1 mici)

(c0 +
∑n

i=1 mici)
2h2

0 +
(
D̃ + B

∑n
i=1 mi
n

) (
D̃ + B

( ∑n
i=1 mi
n

− 1
))
f 2

0

+2(c0 +
∑n

i=1 mici)

(
D̃ + B

( ∑n
i=1 mi
n

− 1

2

))
f0h0 + (c0 +

∑n
i=1 mici)

R(m) = L(m)− L(m + 1) = 2(c0 +
∑n

i=1 mici)

nccm = −C2 < 0 − (c0 +
∑n

i=1 mici)
2∑n

i=1 ci
f 2− +

D̃

C
(2(c0 +

∑n
i=1 mici) +

∑n
i=1 ci )f−h−

+(D̃2 − (B2 + 1)(c0 +
∑n

i=1 mici))h
2−

− (c0 +
∑n

i=1 mici)
2∑n

i=1 ci
f 2− +

D̃

C
(2(c0 +

∑n
i=1 mici)− ∑n

i=1 ci )f−h−

+(D̃2 + (B2 + 1)(c0 +
∑n

i=1 mici))h
2−

R(m) = L(m)− L(m + 1) = 2(c0 +
∑n

i=1 mici) +
∑n

i=1 ci

where f+ = f+(x,A,B,C), f0 = f0(x,A,B), f− = f−(x,A,B,C)
h+ = h+(x,A,B,C), h0 = h0(x,A,B), h− = h−(x,A,B,C) are defined as in table 2

Ṽ (x,m) = V (x,m − 1) + R(m − 1), but this can be checked directly. In order to do so, it
may be useful to recall several relations that the functions defined in table 2 satisfy. When
nccm = C2 we have

f ′
+ = C(1 − f 2

+ ) = C(B2 − 1)h2
+ h′

+ = −Cf+h+

when nccm = 0,

f ′
0 = −Bf 2

0 h′
0 = −Bf0h0 + 1

and finally when nccm = −C2,

f ′
− = C(1 + f 2

−) = C(B2 + 1)h2
− h′

− = Cf−h−
where the prime denotes the derivative with respect to x. The arguments of the functions are
the same as in the mentioned table and have been left out for simplicity.

When we have only one parameter, that is, n = 1, one recovers the solutions for
k(x,m) = k0(x) + mk1(x) shown in the first column of [7, table 6], and the corresponding
shape-invariant partner potentials of table 7 in the same reference.

For all cases in table 4, the formal expression of R(m) is exactly the same, but either∑n
i=1 ci = nccm have different sign or vanish. Let us now consider the problem of how to

determine L(m) from R(m). The method does not provide the expression of L(m) but of
L(m)− L(m + 1). In fact, there is a freedom in determining this function L(m). Fortunately,
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for the purposes of quantum mechanics the relevant function is R(m), from which the energy
spectrum of shape-invariant potentials in the sense of [11] is calculated [7].

However, let us show how this underdetermination appears. Since

R(m) = L(m)− L(m + 1) = 2

(
c0 +

n∑
i=1

mici

)
+

n∑
i=1

ci (54)

is a polynomial in the n parameters mi , and we have considered only polynomial functions
of these quantities so far, L(m) should also be a polynomial. It is of degree two, otherwise
a simple calculation would show that the coefficients of terms of degree three or higher must
vanish. Consequently, we propose L(m) = ∑n

i,j=1 rijmimj +
∑n

i=1 simi + t , where rij is

symmetric, rij = rji . Therefore, there are 1
2n(n+ 1)+ n+ 1 constants to be determined. Then,

making use of the symmetry of rij in its indices we obtain

L(m)− L(m + 1) = −2
n∑

i,j=1

rijmi −
n∑

i,j=1

rij −
n∑
i=1

si .

Comparing with (54) we find the following conditions to be satisfied:

−
n∑

j=1

rij = ci ∀i ∈ {1, . . . , n} and −
n∑
i=1

si = 2c0.

The first of these equations expresses the problem of finding symmetric matrices of order n
whose rows (or columns) sum n given numbers. That is, to solve a linear system of n equations
with 1

2n(n + 1) unknowns. For n > 1 the solutions determine an affine space of dimension
1
2n(n + 1)− n = 1

2n(n− 1). Moreover, for n > 1 the second condition always determine an
affine space of dimension n− 1. The well known case of n = 1 [7,12] gives a unique solution
to both conditions. However, the constant t always remains undetermined.

We will now try to find other generalizations of shape-invariant potentials which depend
on n parameters transformed by means of a translation. We should try a generalization using
inverse powers of the mi parameters; we already know that for the case n = 1 there appear
at least three new families of solutions (see table 6 in [7]). So, we will try a solution of the
following type, provided mi 	= 0, for all i,

k(x,m) =
n∑
i=1

fi(x)

mi

+ g0(x) +
n∑
i=1

migi(x). (55)

Here, fi(x), gi(x) and g0(x) are functions of x to be determined. Substituting into (40) we
obtain, after a little algebra,

L(m)− L(m + 1) = −
n∑

i,j=1

fifj (1 + mi + mj)

mi(mi + 1)mj (mj + 1)
− 2g0

n∑
i=1

fi

mi(mi + 1)

−2
n∑

i,j=1

mjgjfi

mi(mi + 1)
+ 2

n∑
i,j=1

gjfi

mi + 1
+

n∑
i=1

2mi + 1

mi(mi + 1)

dfi
dx

+ · · ·

where the dots represent the right-hand side of (43). The coefficients of each of the different
dependences on the parameters mi have to be constant. The term

−
n∑

i,j=1

fifj (1 + mi + mj)

mi(mi + 1)mj (mj + 1)

involves a symmetric expression under the interchange of the indices i and j . As a consequence,
we obtain that fifj = Const. for all i, j . Since i and j run independently the only possibility
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is that fi = Const. for all i ∈ {1, . . . , n}. We will assume that at least one of the fi is different
from zero, otherwise we find ourselves in the already studied case. Then, the term

−2g0

n∑
i=1

fi

mi(mi + 1)

gives us g0 = Const. and the term which contains the derivatives of the fi vanishes. The sum
of the terms

2
n∑

i,j=1

gjfi

mi + 1
− 2

n∑
i,j=1

mjgjfi

mi(mi + 1)

is only zero for n = 1. Then, for n > 1 the first term provides us with
∑n

i=1 gi = Const. and
the second one, gi = Const. for all i ∈ {1, . . . , n}. This is just a particular case of the trivial
solution. For n = 1, however, we obtain more solutions; this is the case already discussed
in [7, 12]. It should be noted that, in general,

2
n∑

i,j=1

gjfi

mi + 1
− 2

n∑
i,j=1

mjgjfi

mi(mi + 1)
	= 2

n∑
i,j=1

figj

mi + 1

(
1 − mj

mi

)

as one could be tempted to write if one does not take care. Taking the last equation as being
valid will lead to incorrect results. As a conclusion we obtain that the trial solution k(x,m)
corresponding to that of the case n = 1 admits no non-trivial generalization to solutions of the
type (55).

It can be shown that if we propose further generalizations to greater degree inverse powers
of the parameters mi , the only solution is also a trivial one. For example, if we try a solution
of the type

k(x,m) =
n∑

i,j=1

hij (x)

mimj

+
n∑
i=1

fi(x)

mi

+ g0(x) +
n∑
i=1

migi(x) (56)

where hij (x) = hji(x), the only possibility we will obtain is that all involved functions of x
have to be constant.

Now we try to generalize (42) to higher positive powers. That is, we will now try a solution
of the type

k(x,m) = g0(x) +
n∑
i=1

migi(x) +
n∑

i,j=1

mimjeij (x). (57)

Substituting into (40) we obtain, after several calculations,

L(m)− L(m + 1) = 4
n∑

i,j,k,l=1

mimjmkeij ekl + 4
n∑

i,j,k,l=1

mieijmk(ekl + gk)

+2
n∑

i,j=1

mimj

( n∑
k,l=1

(ekl + gl)eij +
deij
dx

)

+4
n∑

i,j=1

mieij

( n∑
k,l=1

(ekl + gl) + g0

)

+2
n∑
i=1

mi

(
gi

n∑
j,k=1

(ejk + gj ) +
d

dx

n∑
k=1

(eik + gi)

)

+
n∑

i,j=1

(eij + gi)

( n∑
k,l=1

(elk + gl) + 2g0

)
+

d

dx

( n∑
i,j=1

(eij + gi) + 2g0

)
. (58)
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As in previous cases, the coefficients of each different type of dependence on the parameters
mi have to be constant. Let us analyse the term of higher degree, i.e. the first term on the
right-hand side of (58). Since it contains a completely symmetric sum in the parameters mi ,
the dependence on the functions eij should also be completely symmetric in the corresponding
indices. For that reason, we rewrite it as

4
n∑

i,j,k,l=1

mimjmkeij ekl = 4
3

n∑
i,j,k,l=1

mimjmk(eij ekl + ejkeil + ekiejl)

from where one finds the necessary condition
n∑
l=1

(eij ekl + ejkeil + ekiejl) = dijk ∀i, j, k ∈ {1, . . . , n}

where dijk are completely symmetric in their three-indices constants. The number of
independent equations of this type is just the number of independent components of a
completely symmetric tensor in its three indices, each one running from 1 to n. This number
is 1

6n(n + 1)(n + 2). The number of independent variables eij is 1
2n(n + 1) from the symmetry

on the two indices. Then, the number of unknowns minus the number of equations is
1
2n(n + 1)− 1

6n(n + 1)(n + 2) = − 1
6 (n− 1)n(n + 1).

For n = 1 the system has the simple solution e11 = Const. For n > 1 the system is not
compatible and has no solutions apart from the trivial one eij = Const. for all i, j . In either
of these cases, it is very easy to deduce from the other terms in (58) that all of the remaining
functions have to be constant as well, provided that not all of the eij constants vanish. For higher
positive power dependence on the mi parameters a similar result holds. In fact, let us suppose
that the higher-order term in our trial solution is of degree q,

∑n
i1,...,iq=1 mi1mi2 . . . miq Ti1,...,iq ,

where Ti1,...,iq is a completely symmetric tensor in its indices. Then, it is easy to prove that the
higher-order term appearing after substitution in (40) is a sum whose general term is of degree
2q − 1 in the mi , being completely symmetric under the interchange of these parameters.
This sum contains the product of Ti1,...,iq by itself, but with one index summed. One then has
to symmetrize the expression for two T in order to obtain the independent equations to be
satisfied, which is equal to the number of independent components of a completely symmetric
tensor in its 2q − 1 indices. This number is (n + 2(q − 1))!/(2q − 1)!(n− 1)!. The number
of independent unknowns is (n + q − 1)!/q!(n− 1)!. So, the number of unknowns minus the
one of equations is

(n + q − 1)!

q!(n− 1)!
− (n + 2(q − 1))!

(2q − 1)!(n− 1)!
.

This number always vanishes for n = 1, which means that the problem is determined and we
obtain that T1,...,1 = Const., in agreement with [12, p 28]. If n > 1, one can easily check
that for q > 1 that number is negative and hence there cannot be other solutions apart from
the trivial solution Ti1,...,iq = Const. for all i1, . . . , iq ∈ {1, . . . , n}. From the terms of lower
degree one should conclude that the only possibility is a particular case of the trivial solution.

5. Conclusions and outlook

Let us comment on the relevance of the more important result of this paper, that is, the fact
that we have been able to solve the differential equation system (44) and (45). That problem
was posed, but not solved, in a often cited paper by Cooper et al [8, pp 2471–2]. They use
a slightly different notation but one can identify their formulae (6.24) with our (42) and our
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procedure by an appropriate redefinition of the parameters taking into account (37) and (35).
However, they failed to find any solution to these equations (for n > 2), and believed that such
a solution could hardly exist.

The conclusion is conceptually of great importance. That is, it has been made clear that
an arbitrary but finite number of parameters subject to transformation is not a limitation to the
existence of shape-invariant partner potentials, and hence, to the existence of exactly solvable
problems in quantum mechanics. This leaves the door open to the possibility to pose and
perhaps solve further generalizations. We also have the possibility of englobing particular
cases of known shape-invariant partner potentials spread over the extensive literature on the
subject (see, for example, [9] and references therein) into one simple but powerful scheme of
classification. In this sense, we think the solution we have found here is very important as it
completes the excellent work started in [8].

Another conceptual point of great importance is that we have gained much more generality
in the solution to the problem by a particularly simple but powerful idea. That is, to consider the
general solution of the Riccati equation with constant coefficients which gives all subsequent
solutions, rather than particular ones. For doing this the important properties of the Riccati
equation have been of great use.

As a byproduct of our present results and that of [7] it is not difficult to see that for n = 1
most of the solutions contained in [8, section 6], later reproduced, for example, in [9], are
directly related to some results of the classic paper [12], since they are solutions of essentially
the same equations.
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[6] Cariñena J F and Ramos A 1999 Integrability of the Riccati equation from a group theoretical viewpoint Int. J.

Mod. Phys. A 14 1935–51
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